#include <glad/glad.h>
#include <GLFW/glfw3.h>
#include <stb_image.h>

#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>

#include <learnopengl/shader.h>
#include <learnopengl/camera.h>
#include <learnopengl/model.h>

#include <iostream>

void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
void processInput(GLFWwindow *window);
void renderSphere();
void renderCube();

// settings
const unsigned int SCR_WIDTH = 1280;
const unsigned int SCR_HEIGHT = 720;

// camera
Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
float lastX = 800.0f / 2.0;
float lastY = 600.0 / 2.0;
bool firstMouse = true;

// timing
float deltaTime = 0.0f;
float lastFrame = 0.0f;

int main()
{
    // glfw: initialize and configure
    // ------------------------------
    glfwInit();
    glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
    glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
    glfwWindowHint(GLFW_SAMPLES, 4);
    glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);

#ifdef __APPLE__
    glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
#endif

    // glfw window creation
    // --------------------
    GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL);
    glfwMakeContextCurrent(window);
    if (window == NULL)
    {
        std::cout << "Failed to create GLFW window" << std::endl;
        glfwTerminate();
        return -1;
    }
    glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
    glfwSetCursorPosCallback(window, mouse_callback);
    glfwSetScrollCallback(window, scroll_callback);

    // tell GLFW to capture our mouse
    glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);

    // glad: load all OpenGL function pointers
    // ---------------------------------------
    if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
    {
        std::cout << "Failed to initialize GLAD" << std::endl;
        return -1;
    }

    // configure global opengl state
    // -----------------------------
    glEnable(GL_DEPTH_TEST);
    glDepthFunc(GL_LEQUAL); // set depth function to less than AND equal for skybox depth trick.

    // build and compile shaders
    // -------------------------
    Shader pbrShader("2.1.2.pbr.vs", "2.1.2.pbr.fs");
    Shader equirectangularToCubemapShader("2.1.2.cubemap.vs", "2.1.2.equirectangular_to_cubemap.fs");
    Shader irradianceShader("2.1.2.cubemap.vs", "2.1.2.irradiance_convolution.fs");
    Shader backgroundShader("2.1.2.background.vs", "2.1.2.background.fs");


    pbrShader.use();
    pbrShader.setInt("irradianceMap", 0);
    pbrShader.setVec3("albedo", 0.5f, 0.0f, 0.0f);
    pbrShader.setFloat("ao", 1.0f);

    backgroundShader.use();
    backgroundShader.setInt("environmentMap", 0);


    // lights
    // ------
    glm::vec3 lightPositions[] = {
        glm::vec3(-10.0f,  10.0f, 10.0f),
        glm::vec3( 10.0f,  10.0f, 10.0f),
        glm::vec3(-10.0f, -10.0f, 10.0f),
        glm::vec3( 10.0f, -10.0f, 10.0f),
    };
    glm::vec3 lightColors[] = {
        glm::vec3(300.0f, 300.0f, 300.0f),
        glm::vec3(300.0f, 300.0f, 300.0f),
        glm::vec3(300.0f, 300.0f, 300.0f),
        glm::vec3(300.0f, 300.0f, 300.0f)
    };
    int nrRows = 7;
    int nrColumns = 7;
    float spacing = 2.5;

    // pbr: setup framebuffer
    // ----------------------
    unsigned int captureFBO;
    unsigned int captureRBO;
    glGenFramebuffers(1, &captureFBO);
    glGenRenderbuffers(1, &captureRBO);

    glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
    glBindRenderbuffer(GL_RENDERBUFFER, captureRBO);
    glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, 512, 512);
    glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, captureRBO);

    // pbr: load the HDR environment map
    // ---------------------------------
    stbi_set_flip_vertically_on_load(true);
    int width, height, nrComponents;
    float *data = stbi_loadf(FileSystem::getPath("resources/textures/hdr/newport_loft.hdr").c_str(), &width, &height, &nrComponents, 0);
    unsigned int hdrTexture;
    if (data)
    {
        glGenTextures(1, &hdrTexture);
        glBindTexture(GL_TEXTURE_2D, hdrTexture);
        glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB16F, width, height, 0, GL_RGB, GL_FLOAT, data); // note how we specify the texture's data value to be float

        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

        stbi_image_free(data);
    }
    else
    {
        std::cout << "Failed to load HDR image." << std::endl;
    }

    // pbr: setup cubemap to render to and attach to framebuffer
    // ---------------------------------------------------------
    unsigned int envCubemap;
    glGenTextures(1, &envCubemap);
    glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap);
    for (unsigned int i = 0; i < 6; ++i)
    {
        glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB16F, 512, 512, 0, GL_RGB, GL_FLOAT, nullptr);
    }
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR); 
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

    // pbr: set up projection and view matrices for capturing data onto the 6 cubemap face directions
    // ----------------------------------------------------------------------------------------------
    glm::mat4 captureProjection = glm::perspective(glm::radians(90.0f), 1.0f, 0.1f, 10.0f);
    glm::mat4 captureViews[] =
    {
        glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(1.0f,  0.0f,  0.0f), glm::vec3(0.0f, -1.0f,  0.0f)),
        glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(-1.0f,  0.0f,  0.0f), glm::vec3(0.0f, -1.0f,  0.0f)),
        glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f,  1.0f,  0.0f), glm::vec3(0.0f,  0.0f,  1.0f)),
        glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, -1.0f,  0.0f), glm::vec3(0.0f,  0.0f, -1.0f)),
        glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f,  0.0f,  1.0f), glm::vec3(0.0f, -1.0f,  0.0f)),
        glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f,  0.0f, -1.0f), glm::vec3(0.0f, -1.0f,  0.0f))
    };

    // pbr: convert HDR equirectangular environment map to cubemap equivalent
    // ----------------------------------------------------------------------
    equirectangularToCubemapShader.use();
    equirectangularToCubemapShader.setInt("equirectangularMap", 0);
    equirectangularToCubemapShader.setMat4("projection", captureProjection);
    glActiveTexture(GL_TEXTURE0);
    glBindTexture(GL_TEXTURE_2D, hdrTexture);

    glViewport(0, 0, 512, 512); // don't forget to configure the viewport to the capture dimensions.
    glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
    for (unsigned int i = 0; i < 6; ++i)
    {
        equirectangularToCubemapShader.setMat4("view", captureViews[i]);
        glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, envCubemap, 0);
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

        renderCube();
    }
    glBindFramebuffer(GL_FRAMEBUFFER, 0);

    // pbr: create an irradiance cubemap, and re-scale capture FBO to irradiance scale.
    // --------------------------------------------------------------------------------
    unsigned int irradianceMap;
    glGenTextures(1, &irradianceMap);
    glBindTexture(GL_TEXTURE_CUBE_MAP, irradianceMap);
    for (unsigned int i = 0; i < 6; ++i)
    {
        glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB16F, 32, 32, 0, GL_RGB, GL_FLOAT, nullptr);
    }
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

    glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
    glBindRenderbuffer(GL_RENDERBUFFER, captureRBO);
    glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, 32, 32);

    // pbr: solve diffuse integral by convolution to create an irradiance (cube)map.
    // -----------------------------------------------------------------------------
    irradianceShader.use();
    irradianceShader.setInt("environmentMap", 0);
    irradianceShader.setMat4("projection", captureProjection);
    glActiveTexture(GL_TEXTURE0);
    glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap);

    glViewport(0, 0, 32, 32); // don't forget to configure the viewport to the capture dimensions.
    glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
    for (unsigned int i = 0; i < 6; ++i)
    {
        irradianceShader.setMat4("view", captureViews[i]);
        glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, irradianceMap, 0);
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

        renderCube();
    }
    glBindFramebuffer(GL_FRAMEBUFFER, 0);

    // initialize static shader uniforms before rendering
    // --------------------------------------------------
    glm::mat4 projection = glm::perspective(glm::radians(camera.Zoom), (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);
    pbrShader.use();
    pbrShader.setMat4("projection", projection);
    backgroundShader.use();
    backgroundShader.setMat4("projection", projection);

    // then before rendering, configure the viewport to the original framebuffer's screen dimensions
    int scrWidth, scrHeight;
    glfwGetFramebufferSize(window, &scrWidth, &scrHeight);
    glViewport(0, 0, scrWidth, scrHeight);

    // render loop
    // -----------
    while (!glfwWindowShouldClose(window))
    {
        // per-frame time logic
        // --------------------
        float currentFrame = static_cast<float>(glfwGetTime());
        deltaTime = currentFrame - lastFrame;
        lastFrame = currentFrame;

        // input
        // -----
        processInput(window);

        // render
        // ------
        glClearColor(0.2f, 0.3f, 0.3f, 1.0f);
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

        // render scene, supplying the convoluted irradiance map to the final shader.
        // ------------------------------------------------------------------------------------------
        pbrShader.use();
        glm::mat4 view = camera.GetViewMatrix();
        pbrShader.setMat4("view", view);
        pbrShader.setVec3("camPos", camera.Position);

        // bind pre-computed IBL data
        glActiveTexture(GL_TEXTURE0);
        glBindTexture(GL_TEXTURE_CUBE_MAP, irradianceMap);

        // render rows*column number of spheres with varying metallic/roughness values scaled by rows and columns respectively
        glm::mat4 model = glm::mat4(1.0f);
        for (int row = 0; row < nrRows; ++row)
        {
            pbrShader.setFloat("metallic", (float)row / (float)nrRows);
            for (int col = 0; col < nrColumns; ++col)
            {
                // we clamp the roughness to 0.025 - 1.0 as perfectly smooth surfaces (roughness of 0.0) tend to look a bit off
                // on direct lighting.
                pbrShader.setFloat("roughness", glm::clamp((float)col / (float)nrColumns, 0.05f, 1.0f));

                model = glm::mat4(1.0f);
                model = glm::translate(model, glm::vec3(
                    (float)(col - (nrColumns / 2)) * spacing,
                    (float)(row - (nrRows / 2)) * spacing,
                    -2.0f
                ));
                pbrShader.setMat4("model", model);
                pbrShader.setMat3("normalMatrix", glm::transpose(glm::inverse(glm::mat3(model))));
                renderSphere();
            }
        }


        // render light source (simply re-render sphere at light positions)
        // this looks a bit off as we use the same shader, but it'll make their positions obvious and 
        // keeps the codeprint small.
        for (unsigned int i = 0; i < sizeof(lightPositions) / sizeof(lightPositions[0]); ++i)
        {
            glm::vec3 newPos = lightPositions[i] + glm::vec3(sin(glfwGetTime() * 5.0) * 5.0, 0.0, 0.0);
            newPos = lightPositions[i];
            pbrShader.setVec3("lightPositions[" + std::to_string(i) + "]", newPos);
            pbrShader.setVec3("lightColors[" + std::to_string(i) + "]", lightColors[i]);

            model = glm::mat4(1.0f);
            model = glm::translate(model, newPos);
            model = glm::scale(model, glm::vec3(0.5f));
            pbrShader.setMat4("model", model);
            pbrShader.setMat3("normalMatrix", glm::transpose(glm::inverse(glm::mat3(model))));
            renderSphere();
        }

        // render skybox (render as last to prevent overdraw)
        backgroundShader.use();
        backgroundShader.setMat4("view", view);
        glActiveTexture(GL_TEXTURE0);
        glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap);
        //glBindTexture(GL_TEXTURE_CUBE_MAP, irradianceMap); // display irradiance map
        renderCube();


        // glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.)
        // -------------------------------------------------------------------------------
        glfwSwapBuffers(window);
        glfwPollEvents();
    }

    // glfw: terminate, clearing all previously allocated GLFW resources.
    // ------------------------------------------------------------------
    glfwTerminate();
    return 0;
}

// process all input: query GLFW whether relevant keys are pressed/released this frame and react accordingly
// ---------------------------------------------------------------------------------------------------------
void processInput(GLFWwindow *window)
{
    if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
        glfwSetWindowShouldClose(window, true);

    if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
        camera.ProcessKeyboard(FORWARD, deltaTime);
    if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
        camera.ProcessKeyboard(BACKWARD, deltaTime);
    if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
        camera.ProcessKeyboard(LEFT, deltaTime);
    if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
        camera.ProcessKeyboard(RIGHT, deltaTime);
}

// glfw: whenever the window size changed (by OS or user resize) this callback function executes
// ---------------------------------------------------------------------------------------------
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
    // make sure the viewport matches the new window dimensions; note that width and 
    // height will be significantly larger than specified on retina displays.
    glViewport(0, 0, width, height);
}


// glfw: whenever the mouse moves, this callback is called
// -------------------------------------------------------
void mouse_callback(GLFWwindow* window, double xposIn, double yposIn)
{
    float xpos = static_cast<float>(xposIn);
    float ypos = static_cast<float>(yposIn);

    if (firstMouse)
    {
        lastX = xpos;
        lastY = ypos;
        firstMouse = false;
    }

    float xoffset = xpos - lastX;
    float yoffset = lastY - ypos; // reversed since y-coordinates go from bottom to top

    lastX = xpos;
    lastY = ypos;

    camera.ProcessMouseMovement(xoffset, yoffset);
}

// glfw: whenever the mouse scroll wheel scrolls, this callback is called
// ----------------------------------------------------------------------
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{
    camera.ProcessMouseScroll(static_cast<float>(yoffset));
}

// renders (and builds at first invocation) a sphere
// -------------------------------------------------
unsigned int sphereVAO = 0;
unsigned int indexCount;
void renderSphere()
{
    if (sphereVAO == 0)
    {
        glGenVertexArrays(1, &sphereVAO);

        unsigned int vbo, ebo;
        glGenBuffers(1, &vbo);
        glGenBuffers(1, &ebo);

        std::vector<glm::vec3> positions;
        std::vector<glm::vec2> uv;
        std::vector<glm::vec3> normals;
        std::vector<unsigned int> indices;

        const unsigned int X_SEGMENTS = 64;
        const unsigned int Y_SEGMENTS = 64;
        const float PI = 3.14159265359f;
        for (unsigned int x = 0; x <= X_SEGMENTS; ++x)
        {
            for (unsigned int y = 0; y <= Y_SEGMENTS; ++y)
            {
                float xSegment = (float)x / (float)X_SEGMENTS;
                float ySegment = (float)y / (float)Y_SEGMENTS;
                float xPos = std::cos(xSegment * 2.0f * PI) * std::sin(ySegment * PI);
                float yPos = std::cos(ySegment * PI);
                float zPos = std::sin(xSegment * 2.0f * PI) * std::sin(ySegment * PI);

                positions.push_back(glm::vec3(xPos, yPos, zPos));
                uv.push_back(glm::vec2(xSegment, ySegment));
                normals.push_back(glm::vec3(xPos, yPos, zPos));
            }
        }

        bool oddRow = false;
        for (unsigned int y = 0; y < Y_SEGMENTS; ++y)
        {
            if (!oddRow) // even rows: y == 0, y == 2; and so on
            {
                for (unsigned int x = 0; x <= X_SEGMENTS; ++x)
                {
                    indices.push_back(y * (X_SEGMENTS + 1) + x);
                    indices.push_back((y + 1) * (X_SEGMENTS + 1) + x);
                }
            }
            else
            {
                for (int x = X_SEGMENTS; x >= 0; --x)
                {
                    indices.push_back((y + 1) * (X_SEGMENTS + 1) + x);
                    indices.push_back(y * (X_SEGMENTS + 1) + x);
                }
            }
            oddRow = !oddRow;
        }
        indexCount = static_cast<unsigned int>(indices.size());

        std::vector<float> data;
        for (unsigned int i = 0; i < positions.size(); ++i)
        {
            data.push_back(positions[i].x);
            data.push_back(positions[i].y);
            data.push_back(positions[i].z);
            if (normals.size() > 0)
            {
                data.push_back(normals[i].x);
                data.push_back(normals[i].y);
                data.push_back(normals[i].z);
            }
            if (uv.size() > 0)
            {
                data.push_back(uv[i].x);
                data.push_back(uv[i].y);
            }
        }
        glBindVertexArray(sphereVAO);
        glBindBuffer(GL_ARRAY_BUFFER, vbo);
        glBufferData(GL_ARRAY_BUFFER, data.size() * sizeof(float), &data[0], GL_STATIC_DRAW);
        glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo);
        glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices.size() * sizeof(unsigned int), &indices[0], GL_STATIC_DRAW);
        unsigned int stride = (3 + 2 + 3) * sizeof(float);
        glEnableVertexAttribArray(0);
        glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, stride, (void*)0);
        glEnableVertexAttribArray(1);
        glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, stride, (void*)(3 * sizeof(float)));
        glEnableVertexAttribArray(2);
        glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, stride, (void*)(6 * sizeof(float)));
    }

    glBindVertexArray(sphereVAO);
    glDrawElements(GL_TRIANGLE_STRIP, indexCount, GL_UNSIGNED_INT, 0);
}

// renderCube() renders a 1x1 3D cube in NDC.
// -------------------------------------------------
unsigned int cubeVAO = 0;
unsigned int cubeVBO = 0;
void renderCube()
{
    // initialize (if necessary)
    if (cubeVAO == 0)
    {
        float vertices[] = {
            // back face
            -1.0f, -1.0f, -1.0f,  0.0f,  0.0f, -1.0f, 0.0f, 0.0f, // bottom-left
             1.0f,  1.0f, -1.0f,  0.0f,  0.0f, -1.0f, 1.0f, 1.0f, // top-right
             1.0f, -1.0f, -1.0f,  0.0f,  0.0f, -1.0f, 1.0f, 0.0f, // bottom-right         
             1.0f,  1.0f, -1.0f,  0.0f,  0.0f, -1.0f, 1.0f, 1.0f, // top-right
            -1.0f, -1.0f, -1.0f,  0.0f,  0.0f, -1.0f, 0.0f, 0.0f, // bottom-left
            -1.0f,  1.0f, -1.0f,  0.0f,  0.0f, -1.0f, 0.0f, 1.0f, // top-left
            // front face
            -1.0f, -1.0f,  1.0f,  0.0f,  0.0f,  1.0f, 0.0f, 0.0f, // bottom-left
             1.0f, -1.0f,  1.0f,  0.0f,  0.0f,  1.0f, 1.0f, 0.0f, // bottom-right
             1.0f,  1.0f,  1.0f,  0.0f,  0.0f,  1.0f, 1.0f, 1.0f, // top-right
             1.0f,  1.0f,  1.0f,  0.0f,  0.0f,  1.0f, 1.0f, 1.0f, // top-right
            -1.0f,  1.0f,  1.0f,  0.0f,  0.0f,  1.0f, 0.0f, 1.0f, // top-left
            -1.0f, -1.0f,  1.0f,  0.0f,  0.0f,  1.0f, 0.0f, 0.0f, // bottom-left
            // left face
            -1.0f,  1.0f,  1.0f, -1.0f,  0.0f,  0.0f, 1.0f, 0.0f, // top-right
            -1.0f,  1.0f, -1.0f, -1.0f,  0.0f,  0.0f, 1.0f, 1.0f, // top-left
            -1.0f, -1.0f, -1.0f, -1.0f,  0.0f,  0.0f, 0.0f, 1.0f, // bottom-left
            -1.0f, -1.0f, -1.0f, -1.0f,  0.0f,  0.0f, 0.0f, 1.0f, // bottom-left
            -1.0f, -1.0f,  1.0f, -1.0f,  0.0f,  0.0f, 0.0f, 0.0f, // bottom-right
            -1.0f,  1.0f,  1.0f, -1.0f,  0.0f,  0.0f, 1.0f, 0.0f, // top-right
            // right face
             1.0f,  1.0f,  1.0f,  1.0f,  0.0f,  0.0f, 1.0f, 0.0f, // top-left
             1.0f, -1.0f, -1.0f,  1.0f,  0.0f,  0.0f, 0.0f, 1.0f, // bottom-right
             1.0f,  1.0f, -1.0f,  1.0f,  0.0f,  0.0f, 1.0f, 1.0f, // top-right         
             1.0f, -1.0f, -1.0f,  1.0f,  0.0f,  0.0f, 0.0f, 1.0f, // bottom-right
             1.0f,  1.0f,  1.0f,  1.0f,  0.0f,  0.0f, 1.0f, 0.0f, // top-left
             1.0f, -1.0f,  1.0f,  1.0f,  0.0f,  0.0f, 0.0f, 0.0f, // bottom-left     
            // bottom face
            -1.0f, -1.0f, -1.0f,  0.0f, -1.0f,  0.0f, 0.0f, 1.0f, // top-right
             1.0f, -1.0f, -1.0f,  0.0f, -1.0f,  0.0f, 1.0f, 1.0f, // top-left
             1.0f, -1.0f,  1.0f,  0.0f, -1.0f,  0.0f, 1.0f, 0.0f, // bottom-left
             1.0f, -1.0f,  1.0f,  0.0f, -1.0f,  0.0f, 1.0f, 0.0f, // bottom-left
            -1.0f, -1.0f,  1.0f,  0.0f, -1.0f,  0.0f, 0.0f, 0.0f, // bottom-right
            -1.0f, -1.0f, -1.0f,  0.0f, -1.0f,  0.0f, 0.0f, 1.0f, // top-right
            // top face
            -1.0f,  1.0f, -1.0f,  0.0f,  1.0f,  0.0f, 0.0f, 1.0f, // top-left
             1.0f,  1.0f , 1.0f,  0.0f,  1.0f,  0.0f, 1.0f, 0.0f, // bottom-right
             1.0f,  1.0f, -1.0f,  0.0f,  1.0f,  0.0f, 1.0f, 1.0f, // top-right     
             1.0f,  1.0f,  1.0f,  0.0f,  1.0f,  0.0f, 1.0f, 0.0f, // bottom-right
            -1.0f,  1.0f, -1.0f,  0.0f,  1.0f,  0.0f, 0.0f, 1.0f, // top-left
            -1.0f,  1.0f,  1.0f,  0.0f,  1.0f,  0.0f, 0.0f, 0.0f  // bottom-left        
        };
        glGenVertexArrays(1, &cubeVAO);
        glGenBuffers(1, &cubeVBO);
        // fill buffer
        glBindBuffer(GL_ARRAY_BUFFER, cubeVBO);
        glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
        // link vertex attributes
        glBindVertexArray(cubeVAO);
        glEnableVertexAttribArray(0);
        glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)0);
        glEnableVertexAttribArray(1);
        glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)(3 * sizeof(float)));
        glEnableVertexAttribArray(2);
        glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)(6 * sizeof(float)));
        glBindBuffer(GL_ARRAY_BUFFER, 0);
        glBindVertexArray(0);
    }
    // render Cube
    glBindVertexArray(cubeVAO);
    glDrawArrays(GL_TRIANGLES, 0, 36);
    glBindVertexArray(0);
}
HI