#include <glad/glad.h>
#include <GLFW/glfw3.h>

#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>

#include <learnopengl/shader.h>
#include <learnopengl/camera.h>
#include <learnopengl/model.h>

#include <iostream>

void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
void processInput(GLFWwindow *window);
unsigned int loadTexture(const char *path, bool gammaCorrection);
void renderQuad();
void renderCube();

// settings
const unsigned int SCR_WIDTH = 800;
const unsigned int SCR_HEIGHT = 600;

// camera
Camera camera(glm::vec3(0.0f, 0.0f, 5.0f));
float lastX = (float)SCR_WIDTH / 2.0;
float lastY = (float)SCR_HEIGHT / 2.0;
bool firstMouse = true;

// timing
float deltaTime = 0.0f;
float lastFrame = 0.0f;

int main()
{
    // glfw: initialize and configure
    // ------------------------------
    glfwInit();
    glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
    glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
    glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);

#ifdef __APPLE__
    glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
#endif

    // glfw window creation
    // --------------------
    GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL);
    if (window == NULL)
    {
        std::cout << "Failed to create GLFW window" << std::endl;
        glfwTerminate();
        return -1;
    }
    glfwMakeContextCurrent(window);
    glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
    glfwSetCursorPosCallback(window, mouse_callback);
    glfwSetScrollCallback(window, scroll_callback);

    // tell GLFW to capture our mouse
    glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);

    // glad: load all OpenGL function pointers
    // ---------------------------------------
    if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
    {
        std::cout << "Failed to initialize GLAD" << std::endl;
        return -1;
    }

    // tell stb_image.h to flip loaded texture's on the y-axis (before loading model).
    stbi_set_flip_vertically_on_load(true);

    // configure global opengl state
    // -----------------------------
    glEnable(GL_DEPTH_TEST);

    // build and compile shaders
    // -------------------------
    Shader shaderGeometryPass("8.2.g_buffer.vs", "8.2.g_buffer.fs");
    Shader shaderLightingPass("8.2.deferred_shading.vs", "8.2.deferred_shading.fs");
    Shader shaderLightBox("8.2.deferred_light_box.vs", "8.2.deferred_light_box.fs");

    // load models
    // -----------
    Model backpack(FileSystem::getPath("resources/objects/backpack/backpack.obj"));
    std::vector<glm::vec3> objectPositions;
    objectPositions.push_back(glm::vec3(-3.0, -0.5, -3.0));
    objectPositions.push_back(glm::vec3( 0.0, -0.5, -3.0));
    objectPositions.push_back(glm::vec3( 3.0, -0.5, -3.0));
    objectPositions.push_back(glm::vec3(-3.0, -0.5,  0.0));
    objectPositions.push_back(glm::vec3( 0.0, -0.5,  0.0));
    objectPositions.push_back(glm::vec3( 3.0, -0.5,  0.0));
    objectPositions.push_back(glm::vec3(-3.0, -0.5,  3.0));
    objectPositions.push_back(glm::vec3( 0.0, -0.5,  3.0));
    objectPositions.push_back(glm::vec3( 3.0, -0.5,  3.0));


    // configure g-buffer framebuffer
    // ------------------------------
    unsigned int gBuffer;
    glGenFramebuffers(1, &gBuffer);
    glBindFramebuffer(GL_FRAMEBUFFER, gBuffer);
    unsigned int gPosition, gNormal, gAlbedoSpec;
    // position color buffer
    glGenTextures(1, &gPosition);
    glBindTexture(GL_TEXTURE_2D, gPosition);
    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F, SCR_WIDTH, SCR_HEIGHT, 0, GL_RGBA, GL_FLOAT, NULL);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
    glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, gPosition, 0);
    // normal color buffer
    glGenTextures(1, &gNormal);
    glBindTexture(GL_TEXTURE_2D, gNormal);
    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F, SCR_WIDTH, SCR_HEIGHT, 0, GL_RGBA, GL_FLOAT, NULL);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
    glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT1, GL_TEXTURE_2D, gNormal, 0);
    // color + specular color buffer
    glGenTextures(1, &gAlbedoSpec);
    glBindTexture(GL_TEXTURE_2D, gAlbedoSpec);
    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, SCR_WIDTH, SCR_HEIGHT, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
    glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT2, GL_TEXTURE_2D, gAlbedoSpec, 0);
    // tell OpenGL which color attachments we'll use (of this framebuffer) for rendering 
    unsigned int attachments[3] = { GL_COLOR_ATTACHMENT0, GL_COLOR_ATTACHMENT1, GL_COLOR_ATTACHMENT2 };
    glDrawBuffers(3, attachments);
    // create and attach depth buffer (renderbuffer)
    unsigned int rboDepth;
    glGenRenderbuffers(1, &rboDepth);
    glBindRenderbuffer(GL_RENDERBUFFER, rboDepth);
    glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT, SCR_WIDTH, SCR_HEIGHT);
    glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rboDepth);
    // finally check if framebuffer is complete
    if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE)
        std::cout << "Framebuffer not complete!" << std::endl;
    glBindFramebuffer(GL_FRAMEBUFFER, 0);

    // lighting info
    // -------------
    const unsigned int NR_LIGHTS = 32;
    std::vector<glm::vec3> lightPositions;
    std::vector<glm::vec3> lightColors;
    srand(13);
    for (unsigned int i = 0; i < NR_LIGHTS; i++)
    {
        // calculate slightly random offsets
        float xPos = static_cast<float>(((rand() % 100) / 100.0) * 6.0 - 3.0);
        float yPos = static_cast<float>(((rand() % 100) / 100.0) * 6.0 - 4.0);
        float zPos = static_cast<float>(((rand() % 100) / 100.0) * 6.0 - 3.0);
        lightPositions.push_back(glm::vec3(xPos, yPos, zPos));
        // also calculate random color
        float rColor = static_cast<float>(((rand() % 100) / 200.0f) + 0.5); // between 0.5 and 1.)
        float gColor = static_cast<float>(((rand() % 100) / 200.0f) + 0.5); // between 0.5 and 1.)
        float bColor = static_cast<float>(((rand() % 100) / 200.0f) + 0.5); // between 0.5 and 1.)
        lightColors.push_back(glm::vec3(rColor, gColor, bColor));
    }

    // shader configuration
    // --------------------
    shaderLightingPass.use();
    shaderLightingPass.setInt("gPosition", 0);
    shaderLightingPass.setInt("gNormal", 1);
    shaderLightingPass.setInt("gAlbedoSpec", 2);

    // render loop
    // -----------
    while (!glfwWindowShouldClose(window))
    {
        // per-frame time logic
        // --------------------
        auto currentFrame = static_cast<float>(glfwGetTime());
        deltaTime = currentFrame - lastFrame;
        lastFrame = currentFrame;

        // input
        // -----
        processInput(window);

        // render
        // ------
        glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

        // 1. geometry pass: render scene's geometry/color data into gbuffer
        // -----------------------------------------------------------------
        glBindFramebuffer(GL_FRAMEBUFFER, gBuffer);
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
        glm::mat4 projection = glm::perspective(glm::radians(camera.Zoom), (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);
        glm::mat4 view = camera.GetViewMatrix();
        glm::mat4 model = glm::mat4(1.0f);
        shaderGeometryPass.use();
        shaderGeometryPass.setMat4("projection", projection);
        shaderGeometryPass.setMat4("view", view);
        for (unsigned int i = 0; i < objectPositions.size(); i++)
        {
            model = glm::mat4(1.0f);
            model = glm::translate(model, objectPositions[i]);
            model = glm::scale(model, glm::vec3(0.25f));
            shaderGeometryPass.setMat4("model", model);
            backpack.Draw(shaderGeometryPass);
        }
        glBindFramebuffer(GL_FRAMEBUFFER, 0);

        // 2. lighting pass: calculate lighting by iterating over a screen filled quad pixel-by-pixel using the gbuffer's content.
        // -----------------------------------------------------------------------------------------------------------------------
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
        shaderLightingPass.use();
        glActiveTexture(GL_TEXTURE0);
        glBindTexture(GL_TEXTURE_2D, gPosition);
        glActiveTexture(GL_TEXTURE1);
        glBindTexture(GL_TEXTURE_2D, gNormal);
        glActiveTexture(GL_TEXTURE2);
        glBindTexture(GL_TEXTURE_2D, gAlbedoSpec);
        // send light relevant uniforms
        for (unsigned int i = 0; i < lightPositions.size(); i++)
        {
            shaderLightingPass.setVec3("lights[" + std::to_string(i) + "].Position", lightPositions[i]);
            shaderLightingPass.setVec3("lights[" + std::to_string(i) + "].Color", lightColors[i]);
            // update attenuation parameters and calculate radius
            const float constant = 1.0f; // note that we don't send this to the shader, we assume it is always 1.0 (in our case)
            const float linear = 0.7f;
            const float quadratic = 1.8f;
            shaderLightingPass.setFloat("lights[" + std::to_string(i) + "].Linear", linear);
            shaderLightingPass.setFloat("lights[" + std::to_string(i) + "].Quadratic", quadratic);
            // then calculate radius of light volume/sphere
            const float maxBrightness = std::fmaxf(std::fmaxf(lightColors[i].r, lightColors[i].g), lightColors[i].b);
            float radius = (-linear + std::sqrt(linear * linear - 4 * quadratic * (constant - (256.0f / 5.0f) * maxBrightness))) / (2.0f * quadratic);
            shaderLightingPass.setFloat("lights[" + std::to_string(i) + "].Radius", radius);
        }
        shaderLightingPass.setVec3("viewPos", camera.Position);
        // finally render quad
        renderQuad();

        // 2.5. copy content of geometry's depth buffer to default framebuffer's depth buffer
        // ----------------------------------------------------------------------------------
        glBindFramebuffer(GL_READ_FRAMEBUFFER, gBuffer);
        glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0); // write to default framebuffer
        // blit to default framebuffer. Note that this may or may not work as the internal formats of both the FBO and default framebuffer have to match.
        // the internal formats are implementation defined. This works on all of my systems, but if it doesn't on yours you'll likely have to write to the 		
        // depth buffer in another shader stage (or somehow see to match the default framebuffer's internal format with the FBO's internal format).
        glBlitFramebuffer(0, 0, SCR_WIDTH, SCR_HEIGHT, 0, 0, SCR_WIDTH, SCR_HEIGHT, GL_DEPTH_BUFFER_BIT, GL_NEAREST);
        glBindFramebuffer(GL_FRAMEBUFFER, 0);

        // 3. render lights on top of scene
        // --------------------------------
        shaderLightBox.use();
        shaderLightBox.setMat4("projection", projection);
        shaderLightBox.setMat4("view", view);
        for (unsigned int i = 0; i < lightPositions.size(); i++)
        {
            model = glm::mat4(1.0f);
            model = glm::translate(model, lightPositions[i]);
            model = glm::scale(model, glm::vec3(0.125f));
            shaderLightBox.setMat4("model", model);
            shaderLightBox.setVec3("lightColor", lightColors[i]);
            renderCube();
        }


        // glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.)
        // -------------------------------------------------------------------------------
        glfwSwapBuffers(window);
        glfwPollEvents();
    }

    glfwTerminate();
    return 0;
}

// renderCube() renders a 1x1 3D cube in NDC.
// -------------------------------------------------
unsigned int cubeVAO = 0;
unsigned int cubeVBO = 0;
void renderCube()
{
    // initialize (if necessary)
    if (cubeVAO == 0)
    {
        float vertices[] = {
            // back face
            -1.0f, -1.0f, -1.0f,  0.0f,  0.0f, -1.0f, 0.0f, 0.0f, // bottom-left
             1.0f,  1.0f, -1.0f,  0.0f,  0.0f, -1.0f, 1.0f, 1.0f, // top-right
             1.0f, -1.0f, -1.0f,  0.0f,  0.0f, -1.0f, 1.0f, 0.0f, // bottom-right         
             1.0f,  1.0f, -1.0f,  0.0f,  0.0f, -1.0f, 1.0f, 1.0f, // top-right
            -1.0f, -1.0f, -1.0f,  0.0f,  0.0f, -1.0f, 0.0f, 0.0f, // bottom-left
            -1.0f,  1.0f, -1.0f,  0.0f,  0.0f, -1.0f, 0.0f, 1.0f, // top-left
            // front face
            -1.0f, -1.0f,  1.0f,  0.0f,  0.0f,  1.0f, 0.0f, 0.0f, // bottom-left
             1.0f, -1.0f,  1.0f,  0.0f,  0.0f,  1.0f, 1.0f, 0.0f, // bottom-right
             1.0f,  1.0f,  1.0f,  0.0f,  0.0f,  1.0f, 1.0f, 1.0f, // top-right
             1.0f,  1.0f,  1.0f,  0.0f,  0.0f,  1.0f, 1.0f, 1.0f, // top-right
            -1.0f,  1.0f,  1.0f,  0.0f,  0.0f,  1.0f, 0.0f, 1.0f, // top-left
            -1.0f, -1.0f,  1.0f,  0.0f,  0.0f,  1.0f, 0.0f, 0.0f, // bottom-left
            // left face
            -1.0f,  1.0f,  1.0f, -1.0f,  0.0f,  0.0f, 1.0f, 0.0f, // top-right
            -1.0f,  1.0f, -1.0f, -1.0f,  0.0f,  0.0f, 1.0f, 1.0f, // top-left
            -1.0f, -1.0f, -1.0f, -1.0f,  0.0f,  0.0f, 0.0f, 1.0f, // bottom-left
            -1.0f, -1.0f, -1.0f, -1.0f,  0.0f,  0.0f, 0.0f, 1.0f, // bottom-left
            -1.0f, -1.0f,  1.0f, -1.0f,  0.0f,  0.0f, 0.0f, 0.0f, // bottom-right
            -1.0f,  1.0f,  1.0f, -1.0f,  0.0f,  0.0f, 1.0f, 0.0f, // top-right
            // right face
             1.0f,  1.0f,  1.0f,  1.0f,  0.0f,  0.0f, 1.0f, 0.0f, // top-left
             1.0f, -1.0f, -1.0f,  1.0f,  0.0f,  0.0f, 0.0f, 1.0f, // bottom-right
             1.0f,  1.0f, -1.0f,  1.0f,  0.0f,  0.0f, 1.0f, 1.0f, // top-right         
             1.0f, -1.0f, -1.0f,  1.0f,  0.0f,  0.0f, 0.0f, 1.0f, // bottom-right
             1.0f,  1.0f,  1.0f,  1.0f,  0.0f,  0.0f, 1.0f, 0.0f, // top-left
             1.0f, -1.0f,  1.0f,  1.0f,  0.0f,  0.0f, 0.0f, 0.0f, // bottom-left     
            // bottom face
            -1.0f, -1.0f, -1.0f,  0.0f, -1.0f,  0.0f, 0.0f, 1.0f, // top-right
             1.0f, -1.0f, -1.0f,  0.0f, -1.0f,  0.0f, 1.0f, 1.0f, // top-left
             1.0f, -1.0f,  1.0f,  0.0f, -1.0f,  0.0f, 1.0f, 0.0f, // bottom-left
             1.0f, -1.0f,  1.0f,  0.0f, -1.0f,  0.0f, 1.0f, 0.0f, // bottom-left
            -1.0f, -1.0f,  1.0f,  0.0f, -1.0f,  0.0f, 0.0f, 0.0f, // bottom-right
            -1.0f, -1.0f, -1.0f,  0.0f, -1.0f,  0.0f, 0.0f, 1.0f, // top-right
            // top face
            -1.0f,  1.0f, -1.0f,  0.0f,  1.0f,  0.0f, 0.0f, 1.0f, // top-left
             1.0f,  1.0f , 1.0f,  0.0f,  1.0f,  0.0f, 1.0f, 0.0f, // bottom-right
             1.0f,  1.0f, -1.0f,  0.0f,  1.0f,  0.0f, 1.0f, 1.0f, // top-right     
             1.0f,  1.0f,  1.0f,  0.0f,  1.0f,  0.0f, 1.0f, 0.0f, // bottom-right
            -1.0f,  1.0f, -1.0f,  0.0f,  1.0f,  0.0f, 0.0f, 1.0f, // top-left
            -1.0f,  1.0f,  1.0f,  0.0f,  1.0f,  0.0f, 0.0f, 0.0f  // bottom-left        
        };
        glGenVertexArrays(1, &cubeVAO);
        glGenBuffers(1, &cubeVBO);
        // fill buffer
        glBindBuffer(GL_ARRAY_BUFFER, cubeVBO);
        glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
        // link vertex attributes
        glBindVertexArray(cubeVAO);
        glEnableVertexAttribArray(0);
        glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)0);
        glEnableVertexAttribArray(1);
        glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)(3 * sizeof(float)));
        glEnableVertexAttribArray(2);
        glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)(6 * sizeof(float)));
        glBindBuffer(GL_ARRAY_BUFFER, 0);
        glBindVertexArray(0);
    }
    // render Cube
    glBindVertexArray(cubeVAO);
    glDrawArrays(GL_TRIANGLES, 0, 36);
    glBindVertexArray(0);
}


// renderQuad() renders a 1x1 XY quad in NDC
// -----------------------------------------
unsigned int quadVAO = 0;
unsigned int quadVBO;
void renderQuad()
{
    if (quadVAO == 0)
    {
        float quadVertices[] = {
            // positions        // texture Coords
            -1.0f,  1.0f, 0.0f, 0.0f, 1.0f,
            -1.0f, -1.0f, 0.0f, 0.0f, 0.0f,
             1.0f,  1.0f, 0.0f, 1.0f, 1.0f,
             1.0f, -1.0f, 0.0f, 1.0f, 0.0f,
        };
        // setup plane VAO
        glGenVertexArrays(1, &quadVAO);
        glGenBuffers(1, &quadVBO);
        glBindVertexArray(quadVAO);
        glBindBuffer(GL_ARRAY_BUFFER, quadVBO);
        glBufferData(GL_ARRAY_BUFFER, sizeof(quadVertices), &quadVertices, GL_STATIC_DRAW);
        glEnableVertexAttribArray(0);
        glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)0);
        glEnableVertexAttribArray(1);
        glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)(3 * sizeof(float)));
    }
    glBindVertexArray(quadVAO);
    glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
    glBindVertexArray(0);
}

// process all input: query GLFW whether relevant keys are pressed/released this frame and react accordingly
// ---------------------------------------------------------------------------------------------------------
void processInput(GLFWwindow *window)
{
    if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
        glfwSetWindowShouldClose(window, true);

    if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
        camera.ProcessKeyboard(FORWARD, deltaTime);
    if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
        camera.ProcessKeyboard(BACKWARD, deltaTime);
    if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
        camera.ProcessKeyboard(LEFT, deltaTime);
    if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
        camera.ProcessKeyboard(RIGHT, deltaTime);
}

// glfw: whenever the window size changed (by OS or user resize) this callback function executes
// ---------------------------------------------------------------------------------------------
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
    // make sure the viewport matches the new window dimensions; note that width and 
    // height will be significantly larger than specified on retina displays.
    glViewport(0, 0, width, height);
}

// glfw: whenever the mouse moves, this callback is called
// -------------------------------------------------------
void mouse_callback(GLFWwindow* window, double xposIn, double yposIn)
{
    float xpos = static_cast<float>(xposIn);
    float ypos = static_cast<float>(yposIn);
    if (firstMouse)
    {
        lastX = xpos;
        lastY = ypos;
        firstMouse = false;
    }

    float xoffset = xpos - lastX;
    float yoffset = lastY - ypos; // reversed since y-coordinates go from bottom to top

    lastX = xpos;
    lastY = ypos;

    camera.ProcessMouseMovement(xoffset, yoffset);
}

// glfw: whenever the mouse scroll wheel scrolls, this callback is called
// ----------------------------------------------------------------------
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{
    camera.ProcessMouseScroll(static_cast<float>(yoffset));
}
HI