#ifndef ENTITY_H
#define ENTITY_H
#include <glm/glm.hpp> //glm::mat4
#include <list> //std::list
#include <array> //std::array
#include <memory> //std::unique_ptr
class Transform
{
protected:
//Local space information
glm::vec3 m_pos = { 0.0f, 0.0f, 0.0f };
glm::vec3 m_eulerRot = { 0.0f, 0.0f, 0.0f }; //In degrees
glm::vec3 m_scale = { 1.0f, 1.0f, 1.0f };
//Global space information concatenate in matrix
glm::mat4 m_modelMatrix = glm::mat4(1.0f);
//Dirty flag
bool m_isDirty = true;
protected:
glm::mat4 getLocalModelMatrix()
{
const glm::mat4 transformX = glm::rotate(glm::mat4(1.0f), glm::radians(m_eulerRot.x), glm::vec3(1.0f, 0.0f, 0.0f));
const glm::mat4 transformY = glm::rotate(glm::mat4(1.0f), glm::radians(m_eulerRot.y), glm::vec3(0.0f, 1.0f, 0.0f));
const glm::mat4 transformZ = glm::rotate(glm::mat4(1.0f), glm::radians(m_eulerRot.z), glm::vec3(0.0f, 0.0f, 1.0f));
// Y * X * Z
const glm::mat4 rotationMatrix = transformY * transformX * transformZ;
// translation * rotation * scale (also know as TRS matrix)
return glm::translate(glm::mat4(1.0f), m_pos) * rotationMatrix * glm::scale(glm::mat4(1.0f), m_scale);
}
public:
void computeModelMatrix()
{
m_modelMatrix = getLocalModelMatrix();
m_isDirty = false;
}
void computeModelMatrix(const glm::mat4& parentGlobalModelMatrix)
{
m_modelMatrix = parentGlobalModelMatrix * getLocalModelMatrix();
m_isDirty = false;
}
void setLocalPosition(const glm::vec3& newPosition)
{
m_pos = newPosition;
m_isDirty = true;
}
void setLocalRotation(const glm::vec3& newRotation)
{
m_eulerRot = newRotation;
m_isDirty = true;
}
void setLocalScale(const glm::vec3& newScale)
{
m_scale = newScale;
m_isDirty = true;
}
const glm::vec3& getGlobalPosition() const
{
return m_modelMatrix[3];
}
const glm::vec3& getLocalPosition() const
{
return m_pos;
}
const glm::vec3& getLocalRotation() const
{
return m_eulerRot;
}
const glm::vec3& getLocalScale() const
{
return m_scale;
}
const glm::mat4& getModelMatrix() const
{
return m_modelMatrix;
}
glm::vec3 getRight() const
{
return m_modelMatrix[0];
}
glm::vec3 getUp() const
{
return m_modelMatrix[1];
}
glm::vec3 getBackward() const
{
return m_modelMatrix[2];
}
glm::vec3 getForward() const
{
return -m_modelMatrix[2];
}
glm::vec3 getGlobalScale() const
{
return { glm::length(getRight()), glm::length(getUp()), glm::length(getBackward()) };
}
bool isDirty() const
{
return m_isDirty;
}
};
struct Plane
{
glm::vec3 normal = { 0.f, 1.f, 0.f }; // unit vector
float distance = 0.f; // Distance with origin
Plane() = default;
Plane(const glm::vec3& p1, const glm::vec3& norm)
: normal(glm::normalize(norm)),
distance(glm::dot(normal, p1))
{}
float getSignedDistanceToPlane(const glm::vec3& point) const
{
return glm::dot(normal, point) - distance;
}
};
struct Frustum
{
Plane topFace;
Plane bottomFace;
Plane rightFace;
Plane leftFace;
Plane farFace;
Plane nearFace;
};
struct BoundingVolume
{
virtual bool isOnFrustum(const Frustum& camFrustum, const Transform& transform) const = 0;
virtual bool isOnOrForwardPlane(const Plane& plane) const = 0;
bool isOnFrustum(const Frustum& camFrustum) const
{
return (isOnOrForwardPlane(camFrustum.leftFace) &&
isOnOrForwardPlane(camFrustum.rightFace) &&
isOnOrForwardPlane(camFrustum.topFace) &&
isOnOrForwardPlane(camFrustum.bottomFace) &&
isOnOrForwardPlane(camFrustum.nearFace) &&
isOnOrForwardPlane(camFrustum.farFace));
};
};
struct Sphere : public BoundingVolume
{
glm::vec3 center{ 0.f, 0.f, 0.f };
float radius{ 0.f };
Sphere(const glm::vec3& inCenter, float inRadius)
: BoundingVolume{}, center{ inCenter }, radius{ inRadius }
{}
bool isOnOrForwardPlane(const Plane& plane) const final
{
return plane.getSignedDistanceToPlane(center) > -radius;
}
bool isOnFrustum(const Frustum& camFrustum, const Transform& transform) const final
{
//Get global scale thanks to our transform
const glm::vec3 globalScale = transform.getGlobalScale();
//Get our global center with process it with the global model matrix of our transform
const glm::vec3 globalCenter{ transform.getModelMatrix() * glm::vec4(center, 1.f) };
//To wrap correctly our shape, we need the maximum scale scalar.
const float maxScale = std::max(std::max(globalScale.x, globalScale.y), globalScale.z);
//Max scale is assuming for the diameter. So, we need the half to apply it to our radius
Sphere globalSphere(globalCenter, radius * (maxScale * 0.5f));
//Check Firstly the result that have the most chance to failure to avoid to call all functions.
return (globalSphere.isOnOrForwardPlane(camFrustum.leftFace) &&
globalSphere.isOnOrForwardPlane(camFrustum.rightFace) &&
globalSphere.isOnOrForwardPlane(camFrustum.farFace) &&
globalSphere.isOnOrForwardPlane(camFrustum.nearFace) &&
globalSphere.isOnOrForwardPlane(camFrustum.topFace) &&
globalSphere.isOnOrForwardPlane(camFrustum.bottomFace));
};
};
struct SquareAABB : public BoundingVolume
{
glm::vec3 center{ 0.f, 0.f, 0.f };
float extent{ 0.f };
SquareAABB(const glm::vec3& inCenter, float inExtent)
: BoundingVolume{}, center{ inCenter }, extent{ inExtent }
{}
bool isOnOrForwardPlane(const Plane& plane) const final
{
// Compute the projection interval radius of b onto L(t) = b.c + t * p.n
const float r = extent * (std::abs(plane.normal.x) + std::abs(plane.normal.y) + std::abs(plane.normal.z));
return -r <= plane.getSignedDistanceToPlane(center);
}
bool isOnFrustum(const Frustum& camFrustum, const Transform& transform) const final
{
//Get global scale thanks to our transform
const glm::vec3 globalCenter{ transform.getModelMatrix() * glm::vec4(center, 1.f) };
// Scaled orientation
const glm::vec3 right = transform.getRight() * extent;
const glm::vec3 up = transform.getUp() * extent;
const glm::vec3 forward = transform.getForward() * extent;
const float newIi = std::abs(glm::dot(glm::vec3{ 1.f, 0.f, 0.f }, right)) +
std::abs(glm::dot(glm::vec3{ 1.f, 0.f, 0.f }, up)) +
std::abs(glm::dot(glm::vec3{ 1.f, 0.f, 0.f }, forward));
const float newIj = std::abs(glm::dot(glm::vec3{ 0.f, 1.f, 0.f }, right)) +
std::abs(glm::dot(glm::vec3{ 0.f, 1.f, 0.f }, up)) +
std::abs(glm::dot(glm::vec3{ 0.f, 1.f, 0.f }, forward));
const float newIk = std::abs(glm::dot(glm::vec3{ 0.f, 0.f, 1.f }, right)) +
std::abs(glm::dot(glm::vec3{ 0.f, 0.f, 1.f }, up)) +
std::abs(glm::dot(glm::vec3{ 0.f, 0.f, 1.f }, forward));
const SquareAABB globalAABB(globalCenter, std::max(std::max(newIi, newIj), newIk));
return (globalAABB.isOnOrForwardPlane(camFrustum.leftFace) &&
globalAABB.isOnOrForwardPlane(camFrustum.rightFace) &&
globalAABB.isOnOrForwardPlane(camFrustum.topFace) &&
globalAABB.isOnOrForwardPlane(camFrustum.bottomFace) &&
globalAABB.isOnOrForwardPlane(camFrustum.nearFace) &&
globalAABB.isOnOrForwardPlane(camFrustum.farFace));
};
};
struct AABB : public BoundingVolume
{
glm::vec3 center{ 0.f, 0.f, 0.f };
glm::vec3 extents{ 0.f, 0.f, 0.f };
AABB(const glm::vec3& min, const glm::vec3& max)
: BoundingVolume{}, center{ (max + min) * 0.5f }, extents{ max.x - center.x, max.y - center.y, max.z - center.z }
{}
AABB(const glm::vec3& inCenter, float iI, float iJ, float iK)
: BoundingVolume{}, center{ inCenter }, extents{ iI, iJ, iK }
{}
std::array<glm::vec3, 8> getVertice() const
{
std::array<glm::vec3, 8> vertice;
vertice[0] = { center.x - extents.x, center.y - extents.y, center.z - extents.z };
vertice[1] = { center.x + extents.x, center.y - extents.y, center.z - extents.z };
vertice[2] = { center.x - extents.x, center.y + extents.y, center.z - extents.z };
vertice[3] = { center.x + extents.x, center.y + extents.y, center.z - extents.z };
vertice[4] = { center.x - extents.x, center.y - extents.y, center.z + extents.z };
vertice[5] = { center.x + extents.x, center.y - extents.y, center.z + extents.z };
vertice[6] = { center.x - extents.x, center.y + extents.y, center.z + extents.z };
vertice[7] = { center.x + extents.x, center.y + extents.y, center.z + extents.z };
return vertice;
}
//see https://gdbooks.gitbooks.io/3dcollisions/content/Chapter2/static_aabb_plane.html
bool isOnOrForwardPlane(const Plane& plane) const final
{
// Compute the projection interval radius of b onto L(t) = b.c + t * p.n
const float r = extents.x * std::abs(plane.normal.x) + extents.y * std::abs(plane.normal.y) +
extents.z * std::abs(plane.normal.z);
return -r <= plane.getSignedDistanceToPlane(center);
}
bool isOnFrustum(const Frustum& camFrustum, const Transform& transform) const final
{
//Get global scale thanks to our transform
const glm::vec3 globalCenter{ transform.getModelMatrix() * glm::vec4(center, 1.f) };
// Scaled orientation
const glm::vec3 right = transform.getRight() * extents.x;
const glm::vec3 up = transform.getUp() * extents.y;
const glm::vec3 forward = transform.getForward() * extents.z;
const float newIi = std::abs(glm::dot(glm::vec3{ 1.f, 0.f, 0.f }, right)) +
std::abs(glm::dot(glm::vec3{ 1.f, 0.f, 0.f }, up)) +
std::abs(glm::dot(glm::vec3{ 1.f, 0.f, 0.f }, forward));
const float newIj = std::abs(glm::dot(glm::vec3{ 0.f, 1.f, 0.f }, right)) +
std::abs(glm::dot(glm::vec3{ 0.f, 1.f, 0.f }, up)) +
std::abs(glm::dot(glm::vec3{ 0.f, 1.f, 0.f }, forward));
const float newIk = std::abs(glm::dot(glm::vec3{ 0.f, 0.f, 1.f }, right)) +
std::abs(glm::dot(glm::vec3{ 0.f, 0.f, 1.f }, up)) +
std::abs(glm::dot(glm::vec3{ 0.f, 0.f, 1.f }, forward));
const AABB globalAABB(globalCenter, newIi, newIj, newIk);
return (globalAABB.isOnOrForwardPlane(camFrustum.leftFace) &&
globalAABB.isOnOrForwardPlane(camFrustum.rightFace) &&
globalAABB.isOnOrForwardPlane(camFrustum.topFace) &&
globalAABB.isOnOrForwardPlane(camFrustum.bottomFace) &&
globalAABB.isOnOrForwardPlane(camFrustum.nearFace) &&
globalAABB.isOnOrForwardPlane(camFrustum.farFace));
};
};
Frustum createFrustumFromCamera(const Camera& cam, float aspect, float fovY, float zNear, float zFar)
{
Frustum frustum;
const float halfVSide = zFar * tanf(fovY * .5f);
const float halfHSide = halfVSide * aspect;
const glm::vec3 frontMultFar = zFar * cam.Front;
frustum.nearFace = { cam.Position + zNear * cam.Front, cam.Front };
frustum.farFace = { cam.Position + frontMultFar, -cam.Front };
frustum.rightFace = { cam.Position, glm::cross(frontMultFar - cam.Right * halfHSide, cam.Up) };
frustum.leftFace = { cam.Position, glm::cross(cam.Up, frontMultFar + cam.Right * halfHSide) };
frustum.topFace = { cam.Position, glm::cross(cam.Right, frontMultFar - cam.Up * halfVSide) };
frustum.bottomFace = { cam.Position, glm::cross(frontMultFar + cam.Up * halfVSide, cam.Right) };
return frustum;
}
AABB generateAABB(const Model& model)
{
glm::vec3 minAABB = glm::vec3(std::numeric_limits<float>::max());
glm::vec3 maxAABB = glm::vec3(std::numeric_limits<float>::min());
for (auto&& mesh : model.meshes)
{
for (auto&& vertex : mesh.vertices)
{
minAABB.x = std::min(minAABB.x, vertex.Position.x);
minAABB.y = std::min(minAABB.y, vertex.Position.y);
minAABB.z = std::min(minAABB.z, vertex.Position.z);
maxAABB.x = std::max(maxAABB.x, vertex.Position.x);
maxAABB.y = std::max(maxAABB.y, vertex.Position.y);
maxAABB.z = std::max(maxAABB.z, vertex.Position.z);
}
}
return AABB(minAABB, maxAABB);
}
Sphere generateSphereBV(const Model& model)
{
glm::vec3 minAABB = glm::vec3(std::numeric_limits<float>::max());
glm::vec3 maxAABB = glm::vec3(std::numeric_limits<float>::min());
for (auto&& mesh : model.meshes)
{
for (auto&& vertex : mesh.vertices)
{
minAABB.x = std::min(minAABB.x, vertex.Position.x);
minAABB.y = std::min(minAABB.y, vertex.Position.y);
minAABB.z = std::min(minAABB.z, vertex.Position.z);
maxAABB.x = std::max(maxAABB.x, vertex.Position.x);
maxAABB.y = std::max(maxAABB.y, vertex.Position.y);
maxAABB.z = std::max(maxAABB.z, vertex.Position.z);
}
}
return Sphere((maxAABB + minAABB) * 0.5f, glm::length(minAABB - maxAABB));
}
class Entity
{
public:
//Scene graph
std::list<std::unique_ptr<Entity>> children;
Entity* parent = nullptr;
//Space information
Transform transform;
Model* pModel = nullptr;
std::unique_ptr<AABB> boundingVolume;
// constructor, expects a filepath to a 3D model.
Entity(Model& model) : pModel{ &model }
{
boundingVolume = std::make_unique<AABB>(generateAABB(model));
//boundingVolume = std::make_unique<Sphere>(generateSphereBV(model));
}
AABB getGlobalAABB()
{
//Get global scale thanks to our transform
const glm::vec3 globalCenter{ transform.getModelMatrix() * glm::vec4(boundingVolume->center, 1.f) };
// Scaled orientation
const glm::vec3 right = transform.getRight() * boundingVolume->extents.x;
const glm::vec3 up = transform.getUp() * boundingVolume->extents.y;
const glm::vec3 forward = transform.getForward() * boundingVolume->extents.z;
const float newIi = std::abs(glm::dot(glm::vec3{ 1.f, 0.f, 0.f }, right)) +
std::abs(glm::dot(glm::vec3{ 1.f, 0.f, 0.f }, up)) +
std::abs(glm::dot(glm::vec3{ 1.f, 0.f, 0.f }, forward));
const float newIj = std::abs(glm::dot(glm::vec3{ 0.f, 1.f, 0.f }, right)) +
std::abs(glm::dot(glm::vec3{ 0.f, 1.f, 0.f }, up)) +
std::abs(glm::dot(glm::vec3{ 0.f, 1.f, 0.f }, forward));
const float newIk = std::abs(glm::dot(glm::vec3{ 0.f, 0.f, 1.f }, right)) +
std::abs(glm::dot(glm::vec3{ 0.f, 0.f, 1.f }, up)) +
std::abs(glm::dot(glm::vec3{ 0.f, 0.f, 1.f }, forward));
return AABB(globalCenter, newIi, newIj, newIk);
}
//Add child. Argument input is argument of any constructor that you create. By default you can use the default constructor and don't put argument input.
template<typename... TArgs>
void addChild(TArgs&... args)
{
children.emplace_back(std::make_unique<Entity>(args...));
children.back()->parent = this;
}
//Update transform if it was changed
void updateSelfAndChild()
{
if (transform.isDirty()) {
forceUpdateSelfAndChild();
return;
}
for (auto&& child : children)
{
child->updateSelfAndChild();
}
}
//Force update of transform even if local space don't change
void forceUpdateSelfAndChild()
{
if (parent)
transform.computeModelMatrix(parent->transform.getModelMatrix());
else
transform.computeModelMatrix();
for (auto&& child : children)
{
child->forceUpdateSelfAndChild();
}
}
void drawSelfAndChild(const Frustum& frustum, Shader& ourShader, unsigned int& display, unsigned int& total)
{
if (boundingVolume->isOnFrustum(frustum, transform))
{
ourShader.setMat4("model", transform.getModelMatrix());
pModel->Draw(ourShader);
display++;
}
total++;
for (auto&& child : children)
{
child->drawSelfAndChild(frustum, ourShader, display, total);
}
}
};
#endif
HI