// Vertex shader:
// ================
#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aNormal;

out vec3 FragPos;
out vec3 Normal;
out vec3 LightPos;

uniform vec3 lightPos; // we now define the uniform in the vertex shader and pass the 'view space' lightpos to the fragment shader. lightPos is currently in world space.

uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;

void main()
{
    gl_Position = projection * view * model * vec4(aPos, 1.0);
    FragPos = vec3(view * model * vec4(aPos, 1.0));
    Normal = mat3(transpose(inverse(view * model))) * aNormal;
    LightPos = vec3(view * vec4(lightPos, 1.0)); // Transform world-space light position to view-space light position
}


// Fragment shader:
// ================
#version 330 core
out vec4 FragColor;

in vec3 FragPos;
in vec3 Normal;
in vec3 LightPos;   // extra in variable, since we need the light position in view space we calculate this in the vertex shader

uniform vec3 lightColor;
uniform vec3 objectColor;

void main()
{
    // ambient
    float ambientStrength = 0.1;
    vec3 ambient = ambientStrength * lightColor;    
    
     // diffuse 
    vec3 norm = normalize(Normal);
    vec3 lightDir = normalize(LightPos - FragPos);
    float diff = max(dot(norm, lightDir), 0.0);
    vec3 diffuse = diff * lightColor;
    
    // specular
    float specularStrength = 0.5;
    vec3 viewDir = normalize(-FragPos); // the viewer is always at (0,0,0) in view-space, so viewDir is (0,0,0) - Position => -Position
    vec3 reflectDir = reflect(-lightDir, norm);  
    float spec = pow(max(dot(viewDir, reflectDir), 0.0), 32);
    vec3 specular = specularStrength * spec * lightColor; 
    
    vec3 result = (ambient + diffuse + specular) * objectColor;
    FragColor = vec4(result, 1.0);
}
HI